Direct Z-Scheme CoFe2O4-Loaded g-C3N4 Photocatalyst with High Degradation Efficiency of Methylene Blue under Visible-Light Irradiation

نویسندگان

چکیده

Magnetically recyclable direct Z-scheme CoFe2O4-loaded g-C3N4 photocatalyst material was fabricated using a facile hydrothermal technique and subsequently characterized by XRD, VSM, PL, FT-IR, EDX, DRS, SEM, BET techniques. The characterization results confirmed that nanoparticles of CoFe2O4 are loaded on the surface sheets. optical band gap has been decreased from 2.65 eV to 1.30 means loading onto nanosheets g-C3N4. This enhanced separation process electron-hole. Under visible light irradiation, photocatalytic activity developed evaluated for photodegradation methylene blue (MB); during this MB decomposed up 98.86% in 140 min. Meanwhile, under same irradiation time conditions, themselves degraded 74.92% 51.53%, respectively. recovered solution after an external magnet studied determine its stability. It shown photoactivity did not change significantly five consecutive cycles.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Photocatalytic degradation of methylene blue by 2 wt.% Fe doped TiO2 nanopowder under visible light irradiation

In this paper, 2wt.% Fe doped TiO2 nanopowder was prepared by a combination of sol-gel and mechanical alloying methods. The mechanical alloying of Fe powder with Ti(OH)4 gel produced from the sol-gel method was used to produce Fe doped TiO2 nanopowder. The synthesized samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and diffuse reflectan...

متن کامل

Highly Enhanced Photoreductive Degradation of Polybromodiphenyl Ethers with g-C3N4/TiO2 under Visible Light Irradiation

A series of high activity photocatalysts g-C3N4-TiO2 were synthesized by simple one-pot thermal transformation method and characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy, Brunauer-Emmett-Teller (BET) surface area, and ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis-DRS). The g-C3N...

متن کامل

Photocatalytic Degradation of Methylene Blue by Innovative BiVO4/TiO2 Composite Films under Visible Light Irradiation

Bismuth vanadate and titanium dioxide (BiVO4/TiO2) composites, used as visible-light-driven photocatalysts were successfully synthesized with different mole ratios by coupling of a co-precipitation method with a sol-gel method. The phase transitions of the as-prepared BiVO4/TiO2 composites were carried out by X-ray diffraction (XRD). The results clearly indicated that the as-synthesized BiVO4/T...

متن کامل

Degradation of Acetaldehyde with Doped TiO2 Photocatalyst Under Visible Light Irradiation

C-, V-doped TiO2 photocatalysts are prepared by a sol-gel process. These catalysts are highly active for the degradation of acetaldehyde both under visible irradiation (> 420 nm) and in the dark, especially for 2.0% V-containing co-doped TiO2. Characterization results suggest that vanadium ions are introduced both on the surface and into the bulk of TiO2. A free electron, induced by the formati...

متن کامل

A general nonaqueous sol-gel route to g-C3N4-coupling photocatalysts: the case of Z-scheme g-C3N4/TiO2 with enhanced photodegradation toward RhB under visible-light

The g-C3N4-coupling TiO2 photocatalysts with controllable particle size as well as the interface contact were prepared by a general nonaqueous sol-gel method. The structural and morphological features of g-C3N4/TiO2 were investigated through the X-ray diffraction, Fourier transformed infrared spectra, scanning electron microscopy and transmission electron microscopy, respectively. It is found t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Inorganics (Basel)

سال: 2023

ISSN: ['2304-6740']

DOI: https://doi.org/10.3390/inorganics11030119